統計学入門:2群の差の検定〜検定方法の選び方〜

研究を行うとときに2群間を比較しようとしたことはありませんか?

 

研究を始めたときや、何か介入研究を行いたいときなど、比較的多く使用される検定手法だと思います。

しかし、2群間を比較するにも、「対応のある」「対応のない」や、「パラメトリックな方法」「ノンパラメトリックな方法」など、実は検定方法は様々です。

 

慣れないと比較したいデータの2群が、何にあてはまるかわからないと思います。

(実体験です・・・)

 

今回は「2群の差の検定」について、検定方法を簡単に選べるようにまとめてみました。

スポンサードサーチ

2群の差の検定〜検定方法の選び方〜

2群の差の検定とは、A群とB群で結果に差があるかを比べるものです。

例)喫煙群と非喫煙群で肺活量に差があるかどうか比べる・・・など

 

このように単純な比較に思えても、データによって選ぶべき検定方法が違います。

2群の差の検定方法の選び方をフローチャートで示します。

 

①まずは比較したいデータが「比率尺度」「間隔尺度」かを確認します。

MRCやMMTなど、順序ではあるが間隔が一定ではない尺度である「順序尺度」は「No」の矢印に進みます。

*データの尺度については以下のサイトを参考にしてください。

EZRの使い方:医療統計実践編  変数の解析

注)データ数が少ないとパラメトリックの方法は行えません。フローチャートの「No」に進んでノンパラメトリックの方法になります。

(データ数は25以上が目安といわれています。)

 

②次にデータが「正規分布」しているかどうかを確認します。

*正規分布の確認については以下のサイトを参考にしてください。

EZRの使い方:正規分布とは?正規分布の求め方

 

③データに対応が有るか無いかによっても検定の方法が変わってきます。

データの対応の有無については後に説明します。

 

これで2群の差の検定方法を選択することができます。

 

フローチャートの左側がパラメトリックの方法、右側がノンパラメトリックの方法になります。

パラメトリックとノンパラメトリックの違いがわからなければ以下のサイトを参考にしてください。

統計学入門:パラメトリック?ノンパラメトリック?

対応の有無

対応の有るデータ
比べたいデータが同一人物である場合、対応のあるデータと表現されます

 

例えば)

若年群vs高齢群など同一人物ではない者同士を比べる場合→対応の無いデータ

介入前vs介入後など同一人物で経過を追って比べる場合→対応の有るデータ

 

対応の有無によって検定方法が違うだけでなく、p値(有意差)の求め方も違ってきます。

検定をかけてしまえばそこまで考えなくても結果はでるのですが、概念を理解しておくと有意差の出やすさがわかりますので、簡単にまとめてみます。

 

以下に対応のないt検定と、対応のあるt検定についてのイメージ図を提示します。

*わかりやすいように表示していますので、データの個数は気にしないでください(t検定の場合はデータの個数はもっと必要ですが・・・)

 

<対応のないt検定>

2群それぞれの郡内のデータのばらつきの大きさと2群間の平均値の差を比較して有意差を算出します。

対応のないt検定 (例)

<対応のあるt検定>

同一人物が反復して2つの条件を行うことになるので、条件間の差が重要になります。

つまり、平均値の差ではなく、条件間の変化が重要になります。

(平均値が上がっていても、上がる人もいれば、下がる人もいるなど、バラバラでは有意差はでません)

対応のあるt検定

このように平均値が上がっていても、条件間の変化で有意差がでる場合と出ない場合があるので、検定方法の間違いには注意しないといけません。

スポンサードサーチ

まとめ

  • 2群間の差の検定についてまとめました。
  • データの尺度や正規分布、対応の有無によって検定方法は違っていきます。
  • 検定方法を間違えると、誤った結果がでてしまいますので、しっかり整理して検定を選択する必要があります。

 

2群間の差の検定は、研究として行いやすく、使いやすい検定方法だと思います。

(私も最初はこればかりしか思いつきませんでした・・・)

せっかく研究しても間違った方法を選択してしまっては意味がありません。

簡単にはなりますが、検定方法の選択についてまとめてみましたので参考にしてもらえたら幸いです。